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This paper describes an experimental and numerical study of an intrusion propagating
along the interface of a two-layer fluid in a channel. We find that when the density
of the intrusion is the depth-weighted mean of the layer densities the interface ahead
of the intrusion is undisturbed, but for other densities the interface ahead of the
intrusion is displaced vertically. We find that this vertical displacement, which takes
the form of an upstream-propagating long wave, depends on the properties of the
intrusion and not only on the relative depths of the two layers. For the case when the
interface is undisturbed the intrusion propagation speed is a minimum. We develop
an energy argument that describes the observed variation of the intrusion speed from
this minimum speed as a function of the intrusion and layer densities and the ratio
of the layer depths. We also show that if, and only if, the layer depths are equal, the
speed of the intrusion is independent of the density of the intrusion.

1. Introduction
An intrusive gravity current (IGC) forms when fluid of one density travels along

an interface between two layers of different densities†. An IGC can be created in
the laboratory using a simple lock release (figure 1) where the density ρi of the fluid
in the intrusion is greater than the density ρU of the upper-layer fluid and smaller
than the density ρL of the lower-layer fluid. When the lock gate is removed, the fluid
behind the lock travels as an IGC along the interface of the two fluid layers, driven
by the buoyancy forces.

The first theoretical description of a high-Reynolds-number IGC used a hydraulic
approach, in the spirit of Benjamin’s (1968) analysis of a gravity current, in which
mass, momentum and energy are conserved in a control volume moving with the speed
of the current, and the interface ahead of the intrusion is assumed to be undisturbed
(Holyer & Huppert 1980). The cubic governing equation has three possible solutions,
which were compared with three experiments carried out by Dr J. E. Simpson. It
was found that the solution corresponding to the maximum IGC volume flux gave
approximate agreement with the observed speeds.

† An IGC will also form if the layers are stratified or if the ambient fluid is continuously
stratified. However, here we restrict attention to the simpler case where the effects of stratification
are confined to a single sharp interface.
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Figure 1. (a) Schematic view of the initial situation for the intrusive gravity current, where
ρU <ρi < ρL and 0< h < H . (b) A sketch of the intrusion for the case where the equilibrium

depth (1.3) ĥE < 0.5.

Lock-release experiments on the doubly symmetrical case, where ρi =
1
2
(ρU +ρL) and

h = 1
2
H , were carried out by Britter & Simpson (1981). They showed that, in this case,

the interface ahead of the current remained flat and that the IGC propagated at a
constant speed for several lock lengths. Further experiments on the doubly symmetric
IGC at large Reynolds numbers showed that it can be considered as a gravity current
in one layer and its mirror image in the plane of the interface in the other layer (Lowe,
Linden & Rottman 2002). The measurements of the propagation speed and the shape
of the intrusion were in agreement with Benjamin’s (1968) energy-conserving theory
for gravity currents.

Experiments with equal layer depths, but with the IGC density no longer restricted
to be the average of the layer densities, were carried out by de Rooij, Linden & Dalziel
(1999). They found that relatively dense or light intrusions generated large-amplitude
interfacial waves ahead of the intrusion, which caused vertical displacements of
the interface. Sutherland, Kyba & Flynn (2004) reworked Holyer & Huppert’s (1980)
theory, specializing it for the Boussinesq case. They developed a perturbation solution
for small departures from the doubly symmetric case, again assuming that the interface
was undisturbed ahead of the IGC. In experiments in which they varied the densities
and layer depths, the measured intrusion speeds were about 5–10% lower than
their perturbation theory predicted. They also observed significant interfacial wave
generation ahead of the IGC when the density of the intrusion was not the depth-
weighted mean of the layer densities, and noted that the exact theory of Holyer &
Huppert (1980) significantly underpredicts the intrusion speeds in that case. They
attributed this discrepancy to the generation of the interfacial waves.

Except for the doubly symmetric IGC, the theories that assume the interface
is undisturbed give poor agreement with experiments and the role of the interfacial
waves in the dynamics and propagation of an IGC remains unclear. We will show that
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it is essential to consider the vertical displacement of the interface in the discussion
of the intrusion dynamics.

In the special case when h = 0, the flow corresponds to a dense gravity current
propagating along the bottom boundary underneath a uniform less-dense fluid. In the
early stages of a lock release the current is observed to travel at a constant speed U0

(Rottman & Simpson 1983), and dimensional analysis predicts that the front speed
for a Boussinesq current takes the form

U0 = F
√

g′
iUH, (1.1)

where g′
iU ≡ g(ρi − ρU )/ρ0 is the reduced gravity (g is the acceleration due to gravity)

of the IGC relative to the upper layer and ρ0 is a representative density. The Froude
number F is, in general, a function of Reynolds number Re =

√
g′

iUH 3/ν, where
ν is the kinematic viscosity, but as Re increases the Froude number becomes less
dependent on Reynolds number (Keulegan 1958; Barr 1967). In the ideal case, where
the Reynolds number is infinite, bottom friction is ignored and energy is conserved,
Benjamin (1968) showed that F = 1/2. Experiments on gravity currents which include
bottom stress and some dissipation give values of about F = 0.48 at high Reynolds
numbers (Shin, Dalziel & Linden 2004). Similarly, we can consider the case of h = H

as that of a less dense current propagating with speed UH at the surface of a dense
fluid.

We non-dimensionalize speeds by the speed
√

g′
LUH of long waves on the interface,

where g′
LU ≡ g(ρL − ρU )/ρ0 is the reduced gravity of the interface, and depths by H .

Dimensionless variables are denoted by a hat. We refer to the case where the density
of the intrusion is equal to the depth-weighted mean density

ρi =
hρL + (H − h)ρU

H
, (1.2)

as the equilibrium IGC and denote the corresponding interface height (the solution
of (1.2) for given densities) as the equilibrium height hE . In terms of the reduced
gravities, the equilibrium depth, from (1.2), is given by

ĥE ≡ hE

H
=

g′
iU

g′
LU

. (1.3)

Thus the two limiting cases, the bottom and the surface gravity currents, have
dimensionless speeds

Û0 = F

√
g′

iU

g′
LU

= F

√
ĥE and ÛH = F

√
g′

Li

g′
LU

= F

√
(1 − ĥE), (1.4)

where g′
Li ≡ g(ρL − ρi)/ρ0 is the reduced gravity between the lower layer and the lock

fluid.
Since there is no deflection of the interface for the equilibrium IGC, it may be

considered as a combination of an upper and lower gravity current, in the manner of
the doubly symmetric case, in each layer. Thus the normalized speed of the equilibrium
IGC is

ÛE = F

√
g′

Li

g′
LU

hE

H
= F

√
g′

iU

g′
LU

(
1 − hE

H

)
= F

√
ĥE(1 − ĥE). (1.5)

Comparison of (1.4) with (1.5) shows that Û0 > ÛE and ÛH > ÛE , so that the
equilibrium IGC travels more slowly than the surface and bottom gravity currents.
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The purpose of this paper is to determine the speeds of an IGC for a range of
density differences and depth ratios, and to investigate the role of interfacial waves
and the interfacial displacement. The paper is organized as follows. The experiments
and numerics are described in § 2, and the results are discussed in § 3. An explanation
of the results in terms of the energetics of the flows is given in § 4 and the conclusions
are given in § 5.

2. Experiments and numerics
2.1. Experimental method

The tank was L = 182 cm long, 23 cm wide and 30 cm deep. For all experiments the
total fluid height H = 20 cm and the gate was positioned at Llock = 30 cm from the
end wall (figure 1a). Thus the intrusions propagated about 5 lock lengths and so
were expected, and observed, to travel at constant speeds after the initial acceleration
from rest. The flow was recorded with a CCD camera, connected to a PC for image
analysis, and positioned 3.4 m in front of the tank. The back of the tank was covered
with tracing film and illuminated with two 95 W fluorescent lamps.

The tank was first filled with a salt solution, of density ρL and dyed with green
food colour, to the required height h. A layer of fresh water with density ρU was
carefully floated on top, until the total height H = 20 cm. Then the gate was pushed
down and the fluid behind the gate was stirred. To obtain the desired density ρi , salt
was added to the lock, or solution was removed and replaced by an equal amount
of fresh water. Potassium permanganate was used to colour this fluid. Densities were
measured using an Anton Paar DMA 5000 density meter to a precision of 10−5 g ml−1.
Density differences were less than 1.5%, so that the flows were Boussinesq.

The experiment was started by pulling the gate vertically out of the tank. The flow
images were captured by the camera every 1/24 s, and analysed using DigiFlow
(Dalziel 2004). The attenuation of light passing through the tank was used to
determine the density field in the flow. From this density field, the cross-tank mean
density, integrated vertically in the z-direction, was calculated for every x-position
and time t . The front speed of the intrusive gravity current was calculated from the
resulting x–t plot (for further details of this method see Shin et al. 2004).

Initially, three series, A, B and C, of experiments were performed, each with
different fixed values of the densities ρL, ρU and ρi . These had equilibrium depths
hE >H/2, hE = H/2 and hE <H/2, respectively. In each series the interface height h

was varied between its extreme values h = 0 and h =H . Table 1 gives the parameters
of the experiments and the measured front speeds. We also carried out six experiments
to examine the vertical displacement of the interface ahead of the IGC (figures 3
and 4).

After we developed the theory for the speed of the IGC (see (4.6)) we noted that the
theory predicts that, when the two layers have equal depths, the speed of the intrusion
is independent of the density of the intrusion (provided it is between the densities of
the two layers). We then carried out additional experiments with equal layer depths
to test this result. In that case the flow was visualized using a shadowgraph, and the
front of the intrusion was timed between two locations 50 cm apart. The parameters
are given in table 2.

2.2. Numerical method

The governing equations are the two-dimensional Boussinesq equations with vorticity
and density as prognostic variables. These equations are given in (13)–(15) in
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Series ĥ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

Û h Exp. 0.37 0.38 0.32 – – 0.25 – – 0.26 0.28 0.28

Û h Num. 0.38 0.36 0.31 0.27 0.25 0.25 0.24 0.24 0.26 0.28 0.31

B

Û h Exp. 0.33 0.33 – – – 0.26 – – – 0.34 0.33

Û h Num. 0.35 0.32 0.29 0.26 0.25 0.25 0.25 0.26 0.29 0.32 0.35

C

Û h Exp. 0.24 – 0.23 – – 0.24 – 0.34 – – 0.43

Û h Num. 0.25 0.23 0.22 0.21 0.22 0.23 0.25 0.29 0.33 0.39 0.42

Table 1. The dimensionless speeds as measured in the experiments and the numerics. Series A:

ρL = 1.0064 gml−1, ρi = 1.0032 gml−1, ĥE = 0.61. Series B: ρL =1.0046 gml−1, ρi =

1.0014 g ml−1, ĥE = 0.50. Series C: ρL = 1.0046 g ml−1, ρi = 0.9998 gml−1, ĥE = 0.25. In each
case ρU =0.9982 gml−1.

ρL 1.0064 1.0046 1.0046 1.0107 1.0110 1.0112 1.0113 1.0108 1.0109 1.0061 1.0058
ρU 0.9982 0.9982 0.9982 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9988 0.9988
ρi 1.0032 1.0014 0.9998 1.0051 1.0086 1.0082 1.0038 1.0024 1.0030 1.0025 1.0016

Û h 0.25 0.26 0.24 0.25 0.22 0.23 0.23 0.23 0.23 0.25 0.24

Table 2. Densities (g ml−1) and measured dimensionless velocities for experiments with two
layers of equal depths.

Härtel, Meiburg & Necker (2000). The viscosity (1 × 10−2 cm2 s−1) and diffusivity
(1.5 × 10−5 cm2 s−1) appropriate for salt water were used. Zero-flux boundary
conditions were imposed on the density field at all boundaries. The velocity field
satisfied no-normal flow and no-slip conditions at the boundaries, except at the
bottom boundary where either a slip or no-slip condition is applied. Initially, the
fluid was at rest, and domain was stratified as in figure 1(a), using the same values
of the density as in table 1. The density variation across the interface was given by a
smooth function, and the interface thickness was less than 0.05H . The equations were
discretized using spectral transforms in space (Catuno et al. 1988) and the leap-frog
method in time. For the no-slip boundary condition, the vorticity at the bottom was
modified based on the finite-difference analogue (Weinan & Liu 1996). The numerical
domain was the same size as the experimental tank and had 1024 and 256 grid points
in the horizontal and vertical directions, respectively. With this grid spacing the front
speed of the IGC was found to be insensitive to the resolution. We compared the
front speed of the bottom-propagating gravity current in case of a slip bottom with
the numerical result of Härtel et al. (2000). The front speed, at a very high Reynolds
number (of order 105), was 0.967U0, taking F = 0.5 in (1.1), while the front speed
calculated by Härtel et al. (2000) was 0.977U0. This is very good agreement in spite
of different numerical approaches.

3. Results
Figure 2 shows images taken from the experiments and the corresponding numerical

simulations for ĥE = 0.25, for a range of dimensionless interface heights ĥ = 0, 0.25,
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Figure 2. Snapshots at t = 20 s of intrusive gravity currents produced by the simulation and

experiment for Series C. Parameters are ĥE = 0.25,
√

g′
LUH = 11.2 cm s−1 and Re = 22 400. The

length is scaled by the total depth H . The numerical simulations are shown in the left panels
and the experiments in the right panels. From the upper to lower panels, the dimensionless

interface height ĥ is 0, 0.25, 0.50, 0.75, and 1, respectively.

0.50, 0.75 and 1. There is excellent agreement between the experiments and the
calculations, both in the speed of propagation as given by the location of the front
and also in the qualitative features of the flow. The simulations show larger billow
structures than are observed in the experiments, and this is due to the restriction
to two dimensions in the calculations. In practice these are broken down by three-
dimensional instabilities (Härtel et al. 2000). The second panel from the top is the
equilibrium case and we observe, as expected, that the interface ahead of the intrusion
is flat. For ĥE = 0.50 and 0.75, there is a wave of depression, which is larger in the
latter case which is further from the equilibrium height. In these latter cases the
intrusion is less dense than the mean-depth weighted density and the IGC flows
above the undisturbed interface height.

Images from the six experiments which examine the displacement of the interface
are shown in figure 3. We see that the interface is elevated when ĥ < ĥE and depressed
when ĥ > ĥE . Note, particularly, that this occurs irrespective of the depth of the
interface. For example, for ĥ = 0.75 the interface both falls (figure 4c, d) and rises
figure 4f . Hence, the motion of the interface is not always in the direction towards the
deeper layer. The magnitude of the deflection δĥ is plotted against ĥE − ĥ in figure 4.
The data fit a least-squares straight line δĥ = 0.30(ĥE − ĥ), with an uncertainty in the
coefficient of about 0.02.

In figure 5(a–c) the dimensionless front speed Û is plotted against the dimensionless
interface height ĥ for each of the three density configurations. The experimental error
in the front speed is about 10%. The numerical results for the front speeds are also
plotted on these figures and they show very good agreement with the experimental
results.

4. An energy model
The IGC results from a release of potential energy stored in the original lock

configuration. After it travels along the interface and all the motion has ceased, the
intrusion eventually leaves three layers. If the layers are formed without any mixing
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Figure 3. Shadowgraph images showing the deflection of the interface caused by the intrusion.

(a) ĥ =0.75, ĥE = 0.76, (b) ĥ =0.75, ĥE = 0.44, (c) ĥ =0.75, ĥE = 0.29, (d) ĥ = 0.75, ĥE = 0.89,
(e) ĥ =0.25, ĥE = 0.77, (f ) ĥ = 0.25, ĥE = 0.35. The initial interface height coincides with the
top of the black rectangle.

0.05

0.10
δh

0.15

0.20

–0.20

–0.15

–0.10

–0.05

0–0.2–0.4–0.6 0.2 0.4 0.6

ˆ

hE -- hˆ ˆ

Figure 4. The dimensionless interface deflection δĥ plotted against the departure ĥE − ĥ

from the equilibrium IGC. The straight line is the least squares linear fit δĥ =0.30(ĥE − ĥ).

their thicknesses from the bottom to the surface are (1 − α)h, αH and (1 − α)(H − h),
respectively, where α = Llock/L. The available potential energy (APE) �P , per unit
length of the channel, defined as the difference in potential energy between the initial
and final state, is readily calculated as

�P = 1
2
gα(1 − α)(h2ρL + (H 2 − 2hH )ρi + (H 2 + 2hH − h2)ρU ). (4.1)
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Figure 5. Plots of the dimensionless front speed Ûh as a function of dimensionless interface
height ĥ for Series A–C, a–c respectively. The open circles are the experimental results and the
closed circles are the numerical results. The curve in each graph is the theoretical prediction
(4.6). The error bars represent the uncertainty in the experimental measurements.
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The minimum value of this APE occurs when d�P/dh= 0, i.e. when

h(ρL − ρU ) = H (ρi − ρU ), (4.2)

which is satisfied by the equilibrium depth h = hE (see (1.2)).
Alternatively, we can calculate the APE per unit area, E, due to the horizontal

density difference, taking the interface as the reference level, as

E = g

∫ 0

−h

(ρL − ρi)z dz + g

∫ H−h

0

(ρi − ρU )z dz (4.3)

= 1
2
g(ρL − ρi)h

2 + 1
2
g(ρi − ρU )(H − h)2. (4.4)

It is easily seen that the equilibrium depth given by (4.2) implies that dE/dh = 0, so
that this APE is also a minimum for this depth. Departures from the minimum value
of the APE are quadratic in h − hE , the distance of the interface from the equilibrium
height.

As many have pointed out since the pioneering work of Yih (1965), the kinetic
energy of gravity currents and intrusions comes from the conversion of the APE
as the density field adjusts. Indeed, theories of gravity currents (e.g. Benjamin 1968;
Shin et al. 2004) have assumed that this conversion occurs without any losses. In this
spirit, we assume that the variation of the IGC speed from its equilibrium value can
be expressed in terms of this energy balance. Hence, we write

Û 2
h = Û 2

E(a(ĥ − ĥE)2 + b(ĥ − ĥE) + c). (4.5)

The parameters a, b and c can be determined using the results of the three special
cases, ĥ = 0, ĥ = ĥE and ĥ = 1. Applying these limits, and using (1.5) and (1.4), gives
a =1/(hE(1 − hE)), b = 0 and c = 1. Hence

Ûh = F

√
ĥ2 − 2ĥĥE + ĥE. (4.6)

This curve is plotted on figure 5(a–c) for each series of experiments, and it agrees
with the experimental data within the experimental error and with the numerical
results. Given that this model assumes that the interface has zero thickness and
ignores any energy losses due to mixing or friction, this agreement suggests that the
first-order dynamics are captured by this analysis.

An interesting feature of (4.6) is found for the case where the two layers have equal
depths, ĥ = 0.5. In this case Ûh = 1

2
F , and (4.6) predicts that the speed of the IGC is

independent of the equilibrium height ĥE . This means that the speed of the intrusion
is, in this case, the same for all values of the lock density, ρU <ρi <ρL. We were
surprised by this prediction and subsequently carried out a series of experiments to
test this result (table 2). The results of these experiments are shown in figure 6. If we
take F = 1

2
(Benjamin 1968) then Ûh = 0.25, shown as the dashed line in figure 6, and

the experiments conform to the prediction.
Finally, we return to the role of the interfacial wave ahead of the intrusion. We

observed, as did Sutherland et al. (2004), that the interface in front of the intrusion
remained undisturbed when the intrusion density was equal to the depth-weighted
mean density (i.e. it corresponded to the equilibrium IGC). The reason for this result
is that, since the IGC flows at its neutral depth (e.g. it sinks down if it is heavier than
the mean of the densities of the two layers), it satisfies

g′
iUhU = g′

LihL. (4.7)
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Figure 6. Ûh plotted against the dimensionless intrusion density (ρi − ρU )/(ρL − ρU ) ≡ ĥE .

The dashed line is Ûh = 1
2
F , with F =0.5.

Application of mass, momentum and energy conservation (de Rooij et al. 1999) shows
that, when the interface ahead of the intrusion remains undisturbed, the front speeds
in each layer are related to the downstream intrusion heights hU and hL by

UU =
√

2g′
iUhU

(
1 − hU

H − h

)
and UL =

√
2g′

LihL

(
1 − hL

h

)
, (4.8)

respectively, where we denote the lower and upper layer speeds by UL and UU ,
respectively (figure 1b). Since these two speeds must be equal, (4.7) and (4.8) imply
that hU/(H − h) = hL/h, and a little algebra shows that this requires ĥ = ĥE . Thus a
fully consistent solution with no upstream disturbance of the interface is possible in
this case.

Further, (4.8) implies that UU >UL when ĥ < ĥE , and vice-versa. Since this inequality
in speeds is impossible, the interface ahead of the IGC must adjust to compensate
for this difference in speeds. If we imagine the two parts of the intrusions as gravity
currents, when UU >UL the interface will rise, and vice-versa. This behaviour is
consistent with the observations in figures 3 and 4, and we find that the magnitude
of the interface deflection is proportional to the departure from the equilibrium case.

5. Conclusions
We have shown that the interface ahead of an IGC remains undisturbed only

in the special case when the intrusion density is the depth-weighted mean of the
layer densities. In other cases the interface is either elevated or depressed by a long
wave that propagates ahead of the IGC. This wave appears to be generated by
the gravitational adjustment of the lock fluid when the gate is removed. Previous
hydraulic theories that ignore this adjustment and the consequent deflection of the
interface are unable to predict the propagation speed of the intrusion. We provide a
new description of the speed of an IGC, propagating along a sharp density interface
at high Reynolds number, in terms of the conversion of available potential energy
into kinetic energy. Our experimental and numerical results agree with the predicted
speeds, within a few percent. This theory predicts that, in the special case when the
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two layers have equal depth, the speed of the IGC is independent of the density of
the intrusion. This prediction is consistent with our experiments.

This problem was first suggested to P. F. L. when he started his PhD in 1969 by
Stewart Turner, showing that Stewart is a scientist far ahead of his time.
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Härtel, C., Meiburg, E. & Necker, F. 2000 Analysis and direct numerical simulation of the flow at
a gravity current head. Part 1. Flow topology and front speed for slip and no-slip boundaries.
J. Fluid Mech. 418, 189–212.

Holyer, J. Y. & Huppert, H. E. 1980 Gravity currents entering a two-layer fluid. J. Fluid Mech.
100, 739–767.

Keulegan, G. H. 1958 The motion of saline fronts in still water. Natl Bur. Stand. Rep. 5813.

Lowe, R. J., Linden, P. F. & Rottman, J. W. 2002 A laboratory study of the velocity structure in
an intrusive gravity current. J. Fluid Mech. 456, 33–48.

Maxworthy, T., Leilich, J., Simpson, J. E. & Meiburg, E. H. 2002 The propagation of a gravity
current into a linearly stratified fluid. J. Fluid Mech. 453, 371–394.

de Rooij, F., Linden, P. F. & Dalziel, S. B. 1999 Saline and particle-driven interfacial intrusions.
J. Fluid Mech. 389, 303–334.

Rottman, J. W. & Simpson, J. E. 1983 Gravity currents produced by instantaneous releases of a
heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95–110.

Shin, J. O., Dalziel, S. B. & Linden, P. F. 2004 Gravity currents produced by lock exchange.
J. Fluid Mech. 521, 1–34.

Sutherland, B. R., Kyba, P. J. & Flynn, M. R. 2004 Intrusive gravity currents in two-layer fluids.
J. Fluid Mech. 514, 327–353.

Weinan, E. & Liu, J.-G. 1996 Vorticity boundary condition and related issues for finite difference
schemes. J. Comput. Phys., 124, 368–382.

Yih, C. S. 1965 Dynamics of Nonhomogeneous Fluids. Macmillan.




